
TENSOR PRODUCT OF KERNEL MODELS

OMAR DE LA CRUZ C., ALEX BARNETT, HUA TANG AND SUSAN HOLMES

Short Abstract. Kernel methods extend the range of applicability of linear multivari-
ate statistical methods to non-linear settings. Since the eigendecomposition of the kernel
matrix is a key step of these methods, it is important to characterize the behavior of the
eigenvectors, under different choices of kernel, when the structure of the data is known and
is simple. For example, when there is a one-dimensional gradient, the scatterplot of the top
two eigenvectors often exhibits the “horseshoe” pattern.

Here we address the characterization of eigenvectors when there is an underlying two-
dimensional gradient, by considering the Kronecker product of kernels. However, for this
approach to be useful beyond the case of rectangular grids, we use a model-based approach
to kernel methods. This approach allows one to qualitatively describe the behavior of the
eigenvectors in particular the presence of nodal domains.

Kernel methods are based on extracting global properties of the data from pairwise com-
parisons between the observation in the study. The underlying intuition is that each obser-
vation is represented by and element of a space X (which we call the landscape), and the
pairwise comparisons are provided by a kernel function K : X×X → R; if the observations in
a sample are represented by x1, . . . , xn ∈ X , we obtain a kernel matrix K = (K(xi, xj))ij. By
Moore–Aronszajn’s Theorem [Berlinet and Thomas-Agnan, 2004], if K is symmetric and of
positive type (i.e., K is a positive semidefinite matrix for any x1, . . . , xn ∈ X and any n ≥ 1),
then there is a reproducing kernel Hilbert space (RKHS) H and a mapping φ : X → H such
that 〈φ(x1), φ(x2)〉 = K(x1, x2), for all x1, x2 ∈ X . This way, any linear multivariate statis-
tical method that depends only on inner products of vectors representing the observations,
like principal components analysis (PCA), discriminant analysis, and many more, can be
applied by simply using K as a Gram matrix of inner products. Amazingly, H and φ do not
need to be described; in fact, even X and the representations of the data points therein can
be skipped, as long as we have a method for pairwise comparisons that produces positive
semidefinite matrices K. This was observed in [Schölkopf et al., 1998]. When the data is
provided as a matrix Xn×p containing measurements of p variables for n observations, so that
the observations are naturally represented by n points in Rp, the use of non-linear kernels
is a very easy way to implement non-linear versions of classical multivariate methods. (The
actual Gram matrix XXT is called the linear kernel).

Unfortunately, the great generality of kernel methods can make it difficult to interpret
the results. For example, when the data correspond to a set of objects with an underlying
one-dimensional characteristic (often called an ordination; also a one-dimensional gradient
or cline, as opposed to the presence of clusters), kernel PCA often produces a horseshoe
pattern in the scatterplot of the first two components [Diaconis et al., 2008]. A simple
examination of the scree plot (eigenvalues plotted in descending order) would suggest that
both components contain important information, but it would be a mistake to conclude that
there is a two-dimensional structure (a two-dimensional gradient) underlying the data.

One approach to a more systematic understanding of the results of kernel methods is
to study what happens when the original data points follow a simple pattern. This is the

1

2 OMAR DE LA CRUZ C., ALEX BARNETT, HUA TANG AND SUSAN HOLMES

approach used in [Diaconis et al., 2008], where the data points were assumed to lie on a one-
dimensional, equally spaced grid. This allowed for an explicit description of the eigenvectors
of the kernel matrix obtained using the kernel function K(x, y) = e−|x−y| (a kernel that down-
weighs the contribution of comparisons between points far apart, and gives more weight to
local information). The question we tackle here is: what is the equivalent of the horseshoe
pattern, when the data follow an underlying two-dimensional gradient?

1. Grid case

1.1. Options. An obvious approach is to consider a two-dimensional grid. However, there
are several natural options to choose from for defining a kernel in this setting. Several of
these choices lead to the eigenvectors of the kernel matrix for the two-dimensional grid being
Kronecker products of the eigenvectors for the one-dimensional grids:

(1) L2 (euclidean) distance: The Gaussian radial basis function K(~x, ~y) = e−d(~x,~y)2/2

factors:

K2[(x1, x2), (y1, y2)] = K1(x1, y1)K1(x2, y2),

so K2 is the Kronecker product two copies of K1.
(2) L1 (city block) distance: The exponential kernel K(~x, ~y) = e−d(~x,~y) factors, as in the

case above. Also, this distance is equivalent to the graph distance, with the two-
dimensional grid being the cartesian product of two path graphs. So, the adjacency
matrix is the Kronecker sum of the adjacency matrices of the paths.

(3) L∞ (max) distance. This is the same as the graph distance, if we add edges joining
the diagonally opposite corners of each grid cell. This graph is obtained as the tensor
product of two path graphs with loops at each vertex. Then the adjacency matrix is
the Kronecker product of the adjacency matrices of the paths.

In case (3), the eigenvectors of the adjacency matrix are the Kronecker products of the
eigenvectors the adjacency matrices for the paths, with the eigenvalues being the products
of the eigenvalues; surprisingly, in (2) the eigenvectors are the same, but the eigenvalues
are sums of eigenvalues. Thus, even if the eigenvectors are the same, the order of the
corresponding eigenvalues might be different.

1.2. Patterns. In the cases above, we have a full description of the eigendecomposition of
K2 based on the eigendecomposition ofK1 (which in turn was characterized in [Diaconis et al., 2008]),
by taking the Kronecker product of the eigenvectors. However, due to symmetry, there are
many repeated eigenvalues, as is to be expected; the bases for each of those eigenspaces of
dimension 2 are not unique, since they can be rotated. Therefore, the eigenvectors produced
by a standard numerical algorithm applied to the product kernel are often rotated versions
of the Kronecker products of eigenvectors. See Figure 1.2 for a typical example.

When plotted onto the original grid, the obvious pattern is the presence of nodal domains
(regions where the entries of the eigenvectors are all positive or all negative). These domains
become smaller, and the alternating patterns more complex, as the eigenvalues become
smaller.

2. Kernel models

2.1. Motivation. A drawback of the rectangular grids considered in the previous section is
that they approximate the case where the data points are evenly spread over a rectangular

TENSOR PRODUCT OF KERNEL MODELS 3

●

●●

●

●●

●●

●●
●
●●

●●●●
●●
●
●●
●●
●●●●

●●
●●●●●●●

●●●

0 20 40 60 80 100

Index

2 4 6 8 10

10
8

6
3

1
 0.04

 0
.0

4

 0.04

 0.04

 0.06

 0
.0

8

 0.1

 0.12

 0.14

 0.16

2 4 6 8 10

10
8

6
3

1

 −0.15

 −0.1

 −
0.

05

 0

 0.05

 0
.1

 0.15

2 4 6 8 10

 −0.15

 −
0.

1

 −0.05
 0

 0.05

 0.1

 0.15

2 4 6 8 10

10
8

6
3

1

 −0.15

 −0.15

 −0.1

 −0.1

 −
0.05

 −0.05

 0
 0

 0.05

 0.05

 0.1

 0.1

 0.15

 0.15

2 4 6 8 10

10
8

6
3

1

 −0.15

 −
0.

15

 −
0.15

 −0.1

 −0.1

 −0.1

 −
0.

05

 −
0.05

 −
0.05

 0

 0 0

 0.05

 0
.0

5

 0.05

 0.1

 0.1

 0.1

 0.15

 0.15

 −0.15

 −0.1

 −0.1

 −0.05

 −0.05

 0

 0

 0

 0.05

 0.05

 0.05

 0.1

 0.1

 0.15

 0.15

10
8

6
3

1

 −0.1

 −0.1

 −0.1

 −0.1

 −0.05

 −
0.

05

 −
0.

05

 −0.05

 0
 0

 0

 0

 0
.0

5

 0
.0

5

 0.1

 0.1

 0.1

10
8

6
3

1

 −0.1

 −0.1

 −0.1

 −
0.

1

 −0.1

 −0.05

 −0.05

 −0.05

 −0.05

 0

 0

 0

 0 0
 0.05

 0.05

 0.05

 0.05

 0
.1

 0.1

 0.1

●

●●

●

●●

●●

●●
●
●●

●●●●
●●
●
●●
●●
●●●●

●●
●●●●●●●

●●●

0 20 40 60 80 100

Index

2 4 6 8 10

10
8

6
3

1

 0.04

 0
.0

4

 0.04

 0.04

 0.06

 0
.0

8

 0.1

 0.12

 0.14

 0.16

2 4 6 8 10

10
8

6
3

1

 −0.15

 −0.1

 −0.05

 0

 0.05

 0
.1

 0.15

2 4 6 8 10

 −0.15

 −0.1

 −0.05

 0

 0.05

 0.1

 0.15

2 4 6 8 10

10
8

6
3

1

 −0.15

 −0.15

 −0.1

 −0.1

 −
0.05

 −0.05

 0
 0

 0.05

 0.05

 0.1

 0.1

 0.15

 0.15

2 4 6 8 10

10
8

6
3

1

 −0.15 −0.15

 −0.1 −0.1

 −0.05 −0.05

 0
 0

 0.05

 0.05

 0.1

 0.1

 0.15

 0.15

 −0.1

 −
0.

1

 −
0.

1

 −0.1

 −0.05

 0

 0.05

 0.1

 0.15

 0.2

10
8

6
3

1

 −0.15

 −0.1

 −0.1

 −0.05

 −0.05

 −
0.

05

 0

 0

 0

 0.05

 0.1

 0.1

 0
.1

 0.15

 0.2

10
8

6
3

1

 −0.15

 −0.1

 −0.1

 −0.05

 −0.05

 −0.05

 0 0

 0

 0.05

 0
.1

 0.1

 0.1

 0.15 0.2

Figure 1 Eigenvectors for a two-
dimensional grid, using the Gauss-

ian kernel. Left : Eigenvalues, and
top eight eigenfunctions, obtained as

Kronecker products of eigenfunctions

of the one-dimensional Gaussian ker-
nel. Right : Eigenvalues and eigenfunc-

tions, computed directly from the two-

dimensional Gaussian kernel. Some
pairs of eigenvectors can be rotated to

match the products (the order of the

eigenfunctions is also changed).

area; this is not very common in practice, since data points tends to appear in a more
rounded blob, with higher concentrations towards the middle.

One way to address the problem of the rectangular shape is to take a model-based ap-
proach to kernel methods. The model we describe here is similar to those considered in
[Rosasco et al., 2010] and [Smale and Zhou, 2009]. According to this point of view, the
structure of the landscape X is determined by the kernel function K, in the sense that we
can use K to decide how “smooth” a function f : X → R is. Indeed, K determines a
smoothing operator L on a space of functions on X , and its top eigenfunctions are then
good candidates for a set of coordinate functions on X . At the same time, the matrix K
determines an operator on Rn, which can be seen as a discrete approximation of L. This
way, the study of kernel methods can be phrased as “learning the operator L from empirical
discrete approximations.”

In this view, it becomes obvious that the probability distribution used to draw a sample
of points from X is a key ingredient. Indeed, disregarding the fact that some parts of X are
sampled more densely than others can lead to misinterpretations of the results.

2.2. The model. The statistical model includes:

(1) The landscape space X , where the samples come from, together with a notion of
smoothness for real-valued functions on X , which is given by the choice of a kernel
function K : X × X → R, symmetric and of positive type. These two things come
together: in a way, the space is implicit in the kernel, and we know about the space
only through the kernel.

(2) A sampling probability measure P on X ; the n observations in the study are assumed
to have been sampled i.i.d. according to P .

In fact, what one is choosing is a RKHS of functions on X whose elements will be those
functions declared to be smooth on X .

Assuming there is a reference probability distribution Q on X (for example, uniform), we
have two smoothing operators acting on L 2(X , P):

TK : f 7→
∫
X
f(y)K(·, y) dQ(y) and SK : f 7→

∫
X
f(y)K(·, y) dP (y).

Remark: Since we want to learn about X , we are usually more interested in TK; but, unless
we also estimate P , and adjust accordingly, we will be estimating SK instead.

2.3. Products of models. We can now consider the product of two models (X ,KX , PX), (Y ,
KY , PY) to obtain a model with higher intrinsic dimension: The landscape is taken to be the

4 OMAR DE LA CRUZ C., ALEX BARNETT, HUA TANG AND SUSAN HOLMES

●

●

●

●

●
● ●

●
●●

●
●

●

●

●

●

●

●
●
●

● ●
● ●

●
●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●
●

●
●

● ●●

●

●

●

●

●

●
●

●

● ●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

● ●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●
●
●

●

●
●
●

●

● ●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●
●●

●

●
●●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●●

●

●●

●

●●

●

●
●
●

●

●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

● ●

●

● ●

●

●●

●
●

●

●

●

● ●

●

●

●
●

●
● ●

●

●
●

●

●

●

●

● ●●

●
●

●

● ●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●
●

●

●●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●●

●

●
● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●●
●

●●

●

●
● ●

●

●

●

●

● ●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●●

●

●
●

●

−3 −1 1 2 3

−3
−1

1
2

3

W[,1]

●

●

●

●

●
● ●

●
●●

●
●

●

●

●

●

●

●
●
●

● ●
● ●

●
●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●
●

●
●

● ●●

●

●

●

●

●

●
●

●

● ●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

● ●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●
●
●

●

●
●
●

●

● ●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●
●●

●

●
●●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●●

●

●●

●

●●

●

●
●
●

●

●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

● ●

●

● ●

●

●●

●
●

●

●

●

● ●

●

●

●
●

●
● ●

●

●
●

●

●

●

●

● ●●

●
●

●

● ●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●
●

●

●●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●●

●

●
● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●●
●

●●

●

●
● ●

●

●

●

●

● ●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●●

●

●
●

●

−3 −1 1 2 3

−3
−1

1
2

3

W[,1]
W
[,2
]

●

●

●

●

●
● ●

●
●●

●
●

●

●

●

●

●

●
●
●

● ●
● ●

●
●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●
●

●
●

● ●●

●

●

●

●

●

●
●

●

● ●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

● ●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●
●
●

●

●
●
●

●

● ●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●
●●

●

●
●●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●●

●

●●

●

●●

●

●
●
●

●

●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

● ●

●

● ●

●

●●

●
●

●

●

●

● ●

●

●

●
●

●
● ●

●

●
●

●

●

●

●

● ●●

●
●

●

● ●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●
●

●

●●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●●

●

●
● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●●
●

●●

●

●
● ●

●

●

●

●

● ●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●●

●

●
●

●

−3 −1 1 2 3

−3
−1

1
2

3

W[,1]

W
[,2
]

●

●

●

●

●
● ●

●
●●

●
●

●

●

●

●

●

●
●
●

● ●
● ●

●
●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●
●

●
●

● ●●

●

●

●

●

●

●
●

●

● ●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

● ●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●
●
●

●

●
●
●

●

● ●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●
●●

●

●
●●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●●

●

●●

●

●●

●

●
●
●

●

●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

● ●

●

● ●

●

●●

●
●

●

●

●

● ●

●

●

●
●

●
● ●

●

●
●

●

●

●

●

● ●●

●
●

●

● ●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●
●

●

●●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●●

●

●
● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●●
●

●●

●

●
● ●

●

●

●

●

● ●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●●

●

●
●

●

−3 −1 1 2 3

−3
−1

1
2

3

W[,1]

W
[,2
]

●

−3 −1 1 3

−3
−1

1
2

3

bin.centers[,1]

●

−3 −1 1 3

−3
−1

1
2

3

bin.centers[,1]

bi
n.
ce
nt
er
s[
,2
]

●

−3 −1 1 3

−3
−1

1
2

3

bin.centers[,1]
bi
n.
ce
nt
er
s[
,2
]

●

−3 −1 1 3

−3
−1

1
2

3

bin.centers[,1]

bi
n.
ce
nt
er
s[
,2
]

●

−3 −1 1 3

−3
−1

1
2

3

bin.centers[,1]

●

−3 −1 1 3

−3
−1

1
2

3

bin.centers[,1]

bi
n.
ce
nt
er
s[
,2
]

●

−3 −1 1 3

−3
−1

1
2

3

bin.centers[,1]

bi
n.
ce
nt
er
s[
,2
]

●

−3 −1 1 3

−3
−1

1
2

3

bin.centers[,1]
bi
n.
ce
nt
er
s[
,2
]

●

−3
−1

1
2

3

●

−3
−1

1
2

3

bi
n.
ce
nt
er
s[
,2
]

Figure 2 Two dimensional case. A

sample from a standard bivariate nor-
mal was taken; the first row shows the

first four eigenfunctions of SK, com-

puted from the points. The second
row shows the eigenfunctions computed

from the data binned into a square grid;

the estimate for the density function is
taken from the number of points in each

bin. The last row contains the first four
eigenfunctions obtained by the prod-

uct method; the densities are the prod-

uct of the estimated marginal densities,
and the eigenfunctions are the Kro-

necker product of the one-dimensional

eigenfunctions. The transparency level
corresponds to lower density, and the

colors to the eigenfunctions.

cartesian product X × Y , the kernel the Kronecker product KX ⊗ KY , while the sampling
probability distribution is obtained as the product measure PX × PY (thus implying the
assumption of independence of the sampling probabilities).

The landscape is still “rectangular,” since it is a cartesian product, but the observations
come from a probability distribution that is not necessarily uniform on this rectangle (for
example, it could be a bivariate normal distribution, if the sampling probability distributions
on the factor models were univariate normal).

This allows us to characterize what we can expect to find when there is a two-dimensional
gradient structure in the data. This includes the existence of nodal domains: contiguous
regions of X where the eigenvectors have the same sign. These domains can be observed in
practice (when X is not known) by, e.g., plotting a scatterplot of the top two eigenvectors
and coloring the points according to the 3rd (or lower) eigenvectors. If well defined regions of
similar color can be seen, this is the equivalent of the horseshoe pattern in this setting. Thus,
one can learn about the underlying dimension: if nodal domains are observed, this suggests
the existence of a two-dimensional gradient; if nodal domains are not apparent in this setting,
then the 3rd eigenvector likely represents an extra spatial dimension. An advantage is that
each of the factors can be estimated more accurately or stably, by estimating on the margins.
Then the product model is estimated in a more stable way from these marginal models
(this, however, depends on the assumption of independence of the sampling probability
distributions).

References

[Berlinet and Thomas-Agnan, 2004] Berlinet, A. and Thomas-Agnan, C. (2004). Reproducing kernel Hilbert
spaces in probability and statistics. Kluwer Academic Publishers, Boston, MA. With a preface by Persi
Diaconis.

[Diaconis et al., 2008] Diaconis, P., Goel, S., and Holmes, S. (2008). Horseshoes in multidimensional scaling
and local kernel methods. Ann. Appl. Stat., 2(3):777–807.

[Rosasco et al., 2010] Rosasco, L., Belkin, M., and Vito, E. D. (2010). On learning with integral operators.
J. Mach. Learn. Res., 11:905–934.

[Schölkopf et al., 1998] Schölkopf, B., Smola, A., and Muller, K.-R. (1998). Nonlinear component analysis
as a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319.

[Smale and Zhou, 2009] Smale, S. and Zhou, D.-X. (2009). Geometry on probability spaces. Constr. Approx.,
30(3):311–323.

